Pressure sensors for automotive HVAC systems

Tom Kwa, PhD
CTO
DunAn Sensing LLC

Automotive Sensor and Electronics Expo
20-21 May 2015
Detroit, Michigan

(c) DunAn Sensing LLC. Proprietary.
Outline

• The need for automotive A/C and the need for a new pressure transducer technology
• A/C fundamentals
• Traditional configuration of automotive A/C
• The developing need for pressure transducers in automotive A/C
• Available media-isolated pressure transducer technologies
• DURAsense™ pressure transducer technology and performance
• Summary
The need for automotive A/C
Other needs for automotive A/C
The need for a new pressure transducer technology

- Piezoresistors or metal film deposited on ceramic diaphragm
- Strain gauges bonded to stainless steel diaphragm
- MEMS chip in stainless steel package with metal diaphragm and silicone oil

(c) DunAn Sensing LLC. Proprietary.
Functions of automotive A/C

- It must cool the air
- It must circulate the air
- It must purify the air
- It must dehumidify the air
The principle of natural A/C
The fundamentals of mechanical refrigeration

\[\Delta S_{\text{univ}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}} \geq 0 \] \hspace{1cm} (2^{nd} \text{ Law of Thermodynamics})

or, heat flows from hot to cold

\[\ln \left(\frac{P_1}{P_2} \right) = \frac{\Delta H_{\text{vap}}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \] \hspace{1cm} (Clausius-Clapeyron Equation)

or, boiling temperature increases with pressure

\[\frac{P_1}{T_1} = \frac{P_2}{T_2} \] \hspace{1cm} (Charles’ Law)

or, compression of a gas raises its temperature
Simplified A/C loop – flow sequence

- Temperature increases with increasing pressure.
- Boiling temperature increases with pressure.
- Refrigerant releases heat.
- Heat flows from hot to cold.
- Lower refrigerant temperature.
- Temperature decreases with decreasing pressure.
- Boiling temperature decreases with pressure.
- Refrigerant absorbs heat.
- Heat flows from hot to cold.

(c) DunAn Sensing LLC. Proprietary.
Simplified A/C loop – component configuration
Temperature-pressure chart of R-134a

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>Pressure kPa</th>
<th>Temp. °C</th>
<th>Pressure kPa</th>
<th>Temp. °C</th>
<th>Pressure kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>-46</td>
<td>-64</td>
<td>4</td>
<td>236</td>
<td>30</td>
<td>666</td>
</tr>
<tr>
<td>-38</td>
<td>-45</td>
<td>6</td>
<td>260</td>
<td>34</td>
<td>758</td>
</tr>
<tr>
<td>-34</td>
<td>-32</td>
<td>8</td>
<td>286</td>
<td>38</td>
<td>858</td>
</tr>
<tr>
<td>-30</td>
<td>-17</td>
<td>10</td>
<td>313</td>
<td>32</td>
<td>966</td>
</tr>
<tr>
<td>-26</td>
<td>0.3</td>
<td>12</td>
<td>341</td>
<td>26</td>
<td>1083</td>
</tr>
<tr>
<td>-22</td>
<td>20</td>
<td>14</td>
<td>371</td>
<td>20</td>
<td>1210</td>
</tr>
<tr>
<td>-18</td>
<td>43</td>
<td>16</td>
<td>402</td>
<td>16</td>
<td>1347</td>
</tr>
<tr>
<td>-14</td>
<td>69</td>
<td>18</td>
<td>434</td>
<td>14</td>
<td>1571</td>
</tr>
<tr>
<td>-10</td>
<td>99</td>
<td>20</td>
<td>469</td>
<td>14</td>
<td>1894</td>
</tr>
<tr>
<td>-6</td>
<td>133</td>
<td>22</td>
<td>505</td>
<td>12</td>
<td>1571</td>
</tr>
<tr>
<td>-2</td>
<td>171</td>
<td>24</td>
<td>543</td>
<td>10</td>
<td>1949</td>
</tr>
<tr>
<td>0</td>
<td>191</td>
<td>26</td>
<td>582</td>
<td>8</td>
<td>2004</td>
</tr>
<tr>
<td>2</td>
<td>213</td>
<td>28</td>
<td>623</td>
<td>6</td>
<td>2520</td>
</tr>
</tbody>
</table>

320-335kPa/46-48psig (PCS)
1400kPa/200psig (HPS)
3000kPa/430psig (HPS)

170-180kPa/24-26psig (PCS)
A/C system in a car
with combustion engine
Pressure Cycling Switch (PCS) for A/C control – expansion valve system
Pressure Cycling Switch (PCS) for A/C control – orifice tube system
Functions of the PCS

• To control the temperature
 • Enables and disables the compressor

• To help protect A/C system from damage
 • Excessively high pressure in the loop can cause line rupture
 • Excessively low pressure resulting in freezing at evaporator surface
 • Activate max speed of condenser fan at pre-set refrigerant pressure
Locations of other pressure switches in automotive A/C systems

(c) DunAn Sensing LLC. Proprietary.
PCS-controlled A/C

- Limited comfort (too hot, too cold)
- Reduced efficiency (system wear and tear, increased fuel consumption/fewer miles per charge)
Benefits of A/C control using a pressure sensor over a PCS

• Enables constant monitoring of pressure instead of only upper and lower (cut-in/cut-out) points
 • More accurate control
 • Faster response
 • Better efficiency
 • Easier to diagnose problems
Challenges for automotive A/C refrigerant pressure sensors

• Chemically compatible with refrigerants (R-134a, R-1234YF, R-744); refrigeration oils; acids formed due to moisture contamination
• High operating temperature (-40°C to 140°C)
• High reliability (>10,000,000 pressure cycles)
• Automotive, therefore must be low cost
Technologies suitable for use in automotive A/C refrigerant pressure sensors

- Piezoresistors or metal film deposited on ceramic diaphragm
- Strain gauges bonded to stainless steel diaphragm
- MEMS chip in stainless steel package with metal diaphragm and silicone oil

(c) DunAn Sensing LLC. Proprietary.
Media-compatible pressure sensor using DURAsense™ oil-free and weld-less MEMS packaging technology

Unique features:
- No oil fill
- No stainless steel diaphragm
- No welds
- No organic-adhesive die attach

Resulting in:
- Compatibility with refrigerant fluids
- Wider temperature range
- Higher reliability
- Improved manufacturing cost
Construction of DunAn Sensing’s DURAsense™ media-compatible MEMS pressure sensor

U.S. Patent Application Nos.: 14/170,355; 14/170,387

(c) DunAn Sensing LLC. Proprietary.
Qualification testing methods and protocols

- Pressure cycling: 0 to FS, >10,000,000 cycles
- Temperature cycling: -40°C to 140°C
- Media-compatibility: automotive refrigerants
- Vibration: 4.5g’s, 20Hz to 200Hz
- Temperature shock: -40°C to 140°C
- Mechanical shock: 100g’s
- EMI
- ESD
- *Et cetera*
Achieved accuracy equal to or better than any other HVAC transducer on the market that meets the automotive cost target

(c) DunAn Sensing LLC. Proprietary.
Performance – before and after qualification

Samples: 96
Temperatures:
- -40, 0, 25, 100, 140 °C
Pressures:
- 0.05, 0.66, 1.28, 1.89, 2.5 MPa
Overall Duration
- 3 months

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>-1.18</td>
<td>-1.03</td>
</tr>
<tr>
<td>MAX</td>
<td>0.34</td>
<td>0.48</td>
</tr>
<tr>
<td>Average</td>
<td>-0.22</td>
<td>-0.26</td>
</tr>
<tr>
<td>StDev</td>
<td>0.19</td>
<td>0.21</td>
</tr>
<tr>
<td>UL</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>LL</td>
<td>-1.5</td>
<td>-1.5</td>
</tr>
<tr>
<td>Cpk</td>
<td>2.20</td>
<td>1.97</td>
</tr>
</tbody>
</table>

Average Shift of ~ 0.4%FS
Characteristics/capabilities of current technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Metal thin-film sensor</th>
<th>Microfuse sensor</th>
<th>Oil-filled sensor</th>
<th>Ceramic thick-film sensor</th>
<th>DURAsense™ MEMS pressure sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement of absolute pressure</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>OK</td>
<td>YES</td>
</tr>
<tr>
<td>Measurement of gauge pressure</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Long-term stability</td>
<td>YES</td>
<td>YES</td>
<td>OK</td>
<td>OK</td>
<td>YES</td>
</tr>
<tr>
<td>High temperature >100°C</td>
<td>OK</td>
<td>OK</td>
<td>NO</td>
<td>OK</td>
<td>YES</td>
</tr>
<tr>
<td>Repeatability</td>
<td>OK</td>
<td>OK</td>
<td>YES</td>
<td>OK</td>
<td>YES</td>
</tr>
<tr>
<td>Accuracy</td>
<td>OK</td>
<td>OK</td>
<td>YES</td>
<td>OK</td>
<td>YES</td>
</tr>
<tr>
<td>Reliability</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>OK</td>
<td>YES</td>
</tr>
<tr>
<td>Cost</td>
<td>HIGH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MEDIUM</td>
<td>LOW</td>
</tr>
</tbody>
</table>

NOTE:
- Requirement fullfilled: Yes / Good
- Requirement partly fullfilled: OK / Maybe
- Requirement not fullfilled: No / Bad

(c) DunAn Sensing LLC. Proprietary.
Summary

Introduction of **DURA sense™**, an *innovative MEMS packaging technology* which *eliminates the need for* the traditional method of *metal diaphragm welding and oil-fill* to achieve media-compatibility and...

...can achieve an *accuracy* equal to or better than any other HVAC transducer currently on the market

...that meets the *cost target* for automotive

...is *compatible* with refrigerant fluids

...has a *wide* *temperature* *range*

...has a *high* *reliability*
Contact

DunAn Sensing LLC
1953 Concourse Drive
San Jose, CA 95131
USA
Phone: +1-408-613-1015
Website: www.dunansensing.com